TOPICS
Search

A-Integrable


A generalization of the Lebesgue integral. A measurable function f(x) is called A-integrable over the closed interval [a,b] if

 m{x:|f(x)|>n}=O(n^(-1)),
(1)

where m is the Lebesgue measure, and

 I=lim_(n->infty)int_a^b[f(x)]_ndx
(2)

exists, where

 [f(x)]_n={f(x)   if |f(x)|<=n; 0   if |f(x)|>n.
(3)

Explore with Wolfram|Alpha

References

Titchmarsh, E. C. "On Conjugate Functions." Proc. London Math. Soc. 29, 49-80, 1928.

Referenced on Wolfram|Alpha

A-Integrable

Cite this as:

Weisstein, Eric W. "A-Integrable." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/A-Integrable.html

Subject classifications