Search Results for ""
6371 - 6380 of 13135 for sun rotationSearch Results

The cycle double cover conjecture states that every bridgeless graph has a collection of cycles which together contain every edge exactly twice. This conjecture remains open, ...
Let j_k(alpha) denote the number of cycles of length k for a permutation alpha expressed as a product of disjoint cycles. The cycle index Z(X) of a permutation group X of ...
A cyclic graph is a graph containing at least one graph cycle. A graph that is not cyclic is said to be acyclic. A cyclic graph possessing exactly one (undirected, simple) ...
The cyclic group C_(10) is the unique Abelian group of group order 10 (the other order-10 group being the non-Abelian D_5). Examples include the integers modulo 10 under ...
The cyclic group C_(11) is unique group of group order 11. An example is the integers modulo 11 under addition (Z_(11)). No modulo multiplication group is isomorphic to ...
The cyclic group C_(12) is one of the two Abelian groups of the five groups total of group order 12 (the other order-12 Abelian group being finite group C2×C6). Examples ...
The group C_2 is the unique group of group order 2. C_2 is both Abelian and cyclic. Examples include the point groups C_s, C_i, and C_2, the integers modulo 2 under addition ...
C_3 is the unique group of group order 3. It is both Abelian and cyclic. Examples include the point groups C_3, C_(3v), and C_(3h) and the integers under addition modulo 3 ...
C_5 is the unique group of group order 5, which is Abelian. Examples include the point group C_5 and the integers mod 5 under addition (Z_5). No modulo multiplication group ...
C_6 is one of the two groups of group order 6 which, unlike D_3, is Abelian. It is also a cyclic. It is isomorphic to C_2×C_3. Examples include the point groups C_6 and S_6, ...

...