Search Results for ""
141 - 150 of 375 for riemannSearch Results

Let P(z) and Q(z) be univariate polynomials in a complex variable z, and let the polynomial degrees of P and Q satisfy deg(Q)>=deg(P+2). Then int_gamma(P(z))/(Q(z))dz = ...
The alternating harmonic series is the series sum_(k=1)^infty((-1)^(k-1))/k=ln2, which is the special case eta(1) of the Dirichlet eta function eta(z) and also the x=1 case ...
Let S_N(s)=sum_(n=1)^infty[(n^(1/N))]^(-s), (1) where [x] denotes nearest integer function, i.e., the integer closest to x. For s>3, S_2(s) = 2zeta(s-1) (2) S_3(s) = ...
There are at least two statements which go by the name of Artin's conjecture. If r is any complex finite-dimensional representation of the absolute Galois group of a number ...
Let a Gram point g_n be called "good" if (-1)^nZ(g_n)>0, and "bad" otherwise (Rosser et al. 1969; Edwards 2001, p. 180). Then the interval between two consecutive good Gram ...
The constant a_(-1) in the Laurent series f(z)=sum_(n=-infty)^inftya_n(z-z_0)^n (1) of f(z) about a point z_0 is called the residue of f(z). If f is analytic at z_0, its ...
A map u:M->N, between two compact Riemannian manifolds, is a harmonic map if it is a critical point for the energy functional int_M|du|^2dmu_M. The norm of the differential ...
The Mellin transform is the integral transform defined by phi(z) = int_0^inftyt^(z-1)f(t)dt (1) f(t) = 1/(2pii)int_(c-iinfty)^(c+iinfty)t^(-z)phi(z)dz. (2) It is implemented ...
The prime number theorem gives an asymptotic form for the prime counting function pi(n), which counts the number of primes less than some integer n. Legendre (1808) suggested ...
The Epstein zeta function for a n×n matrix S of a positive definite real quadratic form and rho a complex variable with R[rho]>n/2 (where R[z] denotes the real part) is ...

...