TOPICS
Search

Search Results for ""


1941 - 1950 of 13135 for rational numberSearch Results
The fibonorial n!_F, also called the Fibonacci factorial, is defined as n!_F=product_(k=1)^nF_k, where F_k is a Fibonacci number. For n=1, 2, ..., the first few fibonorials ...
Let x be a positive number, and define lambda(d) = mu(d)[ln(x/d)]^2 (1) f(n) = sum_(d)lambda(d), (2) where the sum extends over the divisors d of n, and mu(n) is the Möbius ...
Let F_n be the nth Fibonacci number, and let (p|5) be a Legendre symbol so that e_p=(p/5)={1 for p=1,4 (mod 5); -1 for p=2,3 (mod 5). (1) A prime p is called a Wall-Sun-Sun ...
The value of the 2^0 bit in a binary number. For the sequence of numbers 1, 2, 3, 4, ..., the least significant bits are therefore the alternating sequence 1, 0, 1, 0, 1, 0, ...
A fraction containing each of the digits 1 through 9 is called a pandigital fraction. The following table gives the number of pandigital fractions which represent simple unit ...
The nth cubic number n^3 is a sum of n consecutive odd numbers, for example 1^3 = 1 (1) 2^3 = 3+5 (2) 3^3 = 7+9+11 (3) 4^3 = 13+15+17+19, (4) etc. This identity follows from ...
A triangle with rows containing the numbers {1,2,...,n} that begins with 1, ends with n, and such that the sum of each two consecutive entries being a prime. Rows 2 to 6 are ...
A prime p is called a Wolstenholme prime if the central binomial coefficient (2p; p)=2 (mod p^4), (1) or equivalently if B_(p-3)=0 (mod p), (2) where B_n is the nth Bernoulli ...
The cuban primes, named after differences between successive cubic numbers, have the form n^3-(n-1)^3. The first few are 7, 19, 37, 61, 127, 271, ... (OEIS A002407), which ...
A perfect cuboid is a cuboid having integer side lengths, integer face diagonals d_(ab) = sqrt(a^2+b^2) (1) d_(ac) = sqrt(a^2+c^2) (2) d_(bc) = sqrt(b^2+c^2), (3) and an ...
1 ... 192|193|194|195|196|197|198 ... 1314 Previous Next

...