Search Results for ""
2981 - 2990 of 13131 for quadraticnonresidue.htmlSearch Results

The Dirichlet eta function is the function eta(s) defined by eta(s) = sum_(k=1)^(infty)((-1)^(k-1))/(k^s) (1) = (1-2^(1-s))zeta(s), (2) where zeta(s) is the Riemann zeta ...
A piecewise regular function that 1. Has a finite number of finite discontinuities and 2. Has a finite number of extrema can be expanded in a Fourier series which converges ...
Let c and d!=c be real numbers (usually taken as c=1 and d=0). The Dirichlet function is defined by D(x)={c for x rational; d for x irrational (1) and is discontinuous ...
Given a sequence {a_n}_(n=1)^infty, a formal power series f(s) = sum_(n=1)^(infty)(a_n)/(n^s) (1) = a_1+(a_2)/(2^s)+(a_3)/(3^s)+... (2) is called the Dirichlet generating ...
There are several types of integrals which go under the name of a "Dirichlet integral." The integral D[u]=int_Omega|del u|^2dV (1) appears in Dirichlet's principle. The ...
The Dirichlet kernel D_n^M is obtained by integrating the number theoretic character e^(i<xi,x>) over the ball |xi|<=M, D_n^M=-1/(2pir)d/(dr)D_(n-2)^M.
A Dirichlet L-series is a series of the form L_k(s,chi)=sum_(n=1)^inftychi_k(n)n^(-s), (1) where the number theoretic character chi_k(n) is an integer function with period k, ...
The Dirichlet lambda function lambda(x) is the Dirichlet L-series defined by lambda(x) = sum_(n=0)^(infty)1/((2n+1)^x) (1) = (1-2^(-x))zeta(x), (2) where zeta(x) is the ...
The problem of finding the connection between a continuous function f on the boundary partialR of a region R with a harmonic function taking on the value f on partialR. In ...
A series suma(n)e^(-lambda(n)z), where a(n) and z are complex and {lambda(n)} is a monotonic increasing sequence of real numbers. The numbers lambda(n) are called the ...

...