TOPICS
Search

Search Results for ""


191 - 200 of 1360 for primeSearch Results
A process of successively crossing out members of a list according to a set of rules such that only some remain. The best known sieve is the sieve of Eratosthenes for ...
Willans' formula is a prime-generating formula due to Willan (1964) that is defined as follows. Let F(j) = |_cos^2[pi((j-1)!+1)/j]_| (1) = {1 for j=1 or j prime; 0 otherwise ...
A Stoneham number is a number alpha_(b,c) of the form alpha_(b,c)=sum_(k=1)^infty1/(b^(c^k)c^k), where b,c>1 are relatively prime positive integers. Stoneham (1973) proved ...
Let p(d,a) be the smallest prime in the arithmetic progression {a+kd} for k an integer >0. Let p(d)=maxp(d,a) such that 1<=a<d and (a,d)=1. Then there exists a d_0>=2 and an ...
Catalan (1876, 1891) noted that the sequence of Mersenne numbers 2^2-1=3, 2^3-1=7, and 2^7-1=127, and (OEIS A007013) were all prime (Dickson 2005, p. 22). Therefore, the ...
A primality test is a test to determine whether or not a given number is prime, as opposed to actually decomposing the number into its constituent prime factors (which is ...
The determination of a set of factors (divisors) of a given integer ("prime factorization"), polynomial ("polynomial factorization"), etc., which, when multiplied together, ...
The quotient W(p)=((p-1)!+1)/p which must be congruent to 0 (mod p) for p to be a Wilson prime. The quotient is an integer only when p=1 (in which case W(1)=2) or p is a ...
The first Hardy-Littlewood conjecture is called the k-tuple conjecture. It states that the asymptotic number of prime constellations can be computed explicitly. A particular ...
Let p be an odd prime and b a positive integer not divisible by p. Then for each positive odd integer 2k-1<p, let r_k be r_k=(2k-1)b (mod p) with 0<r_k<p, and let t be the ...
1 ... 17|18|19|20|21|22|23 ... 136 Previous Next

...