TOPICS
Search

Search Results for ""


13061 - 13070 of 13131 for perfectinformation.htmlSearch Results
A q-analog of Gauss's theorem due to Jacobi and Heine, _2phi_1(a,b;c;q,c/(ab))=((c/a;q)_infty(c/b;q)_infty)/((c;q)_infty(c/(ab);q)_infty) (1) for |c/(ab)|<1 (Gordon and ...
The series h_q(-r)=sum_(n=1)^infty1/(q^n+r) (1) for q an integer other than 0 and +/-1. h_q and the related series Ln_q(-r+1)=sum_(n=1)^infty((-1)^n)/(q^n+r), (2) which is a ...
The modern definition of the q-hypergeometric function is _rphi_s[alpha_1,alpha_2,...,alpha_r; beta_1,...,beta_s;q,z] ...
The q-analog of integration is given by int_0^1f(x)d(q,x)=(1-q)sum_(i=0)^inftyf(q^i)q^i, (1) which reduces to int_0^1f(x)dx (2) in the case q->1^- (Andrews 1986 p. 10). ...
A q-analog of the multinomial coefficient, defined as ([a_1+...+a_n]_q!)/([a_1]_q!...[a_n]_q!), where [n]_q! is a q-factorial.
The q-analog of pi pi_q can be defined by setting a=0 in the q-factorial [a]_q!=1(1+q)(1+q+q^2)...(1+q+...+q^(a-1)) (1) to obtain ...
The q-analog of the Pochhammer symbol defined by (a;q)_k={product_(j=0)^(k-1)(1-aq^j) if k>0; 1 if k=0; product_(j=1)^(|k|)(1-aq^(-j))^(-1) if k<0; ...
The q-digamma function psi_q(z), also denoted psi_q^((0))(z), is defined as psi_q(z)=1/(Gamma_q(z))(partialGamma_q(z))/(partialz), (1) where Gamma_q(z) is the q-gamma ...
Define the nome by q=e^(-piK^'(k)/K(k))=e^(ipitau), (1) where K(k) is the complete elliptic integral of the first kind with modulus k, K^'(k)=K(sqrt(1-k^2)) is the ...
A q-analog of the Saalschütz theorem due to Jackson is given by where _3phi_2 is the q-hypergeometric function (Koepf 1998, p. 40; Schilling and Warnaar 1999).

...