Search Results for ""
161 - 170 of 1388 for matrix multiplicationSearch Results
A square matrix A is called diagonally dominant if |A_(ii)|>=sum_(j!=i)|A_(ij)| for all i. A is called strictly diagonally dominant if |A_(ii)|>sum_(j!=i)|A_(ij)| for all i. ...
The numbers of positive definite n×n matrices of given types are summarized in the following table. For example, the three positive eigenvalues 2×2 (0,1)-matrices are [1 0; 0 ...
Given a real m×n matrix A, there are four associated vector subspaces which are known colloquially as its fundamental subspaces, namely the column spaces and the null spaces ...
A square which is magic under multiplication instead of addition (the operation used to define a conventional magic square) is called a multiplication magic square. Unlike ...
A change of coordinates matrix, also called a transition matrix, specifies the transformation from one vector basis to another under a change of basis. For example, if ...
Let X(x)=X(x_1,x_2,...,x_n) be a random vector in R^n and let f_X(x) be a probability distribution on X with continuous first and second order partial derivatives. The Fisher ...
A doubly stochastic matrix is a matrix A=(a_(ij)) such that a_(ij)>=0 and sum_(i)a_(ij)=sum_(j)a_(ij)=1 is some field for all i and j. In other words, both the matrix itself ...
The arithmetic-geometric matrix A_(AG) of a simple graph is a weighted adjacency matrix with weight f(d_i,d_j)=sqrt(d_i^2+d_j^2), (1) where d_i are the vertex degrees of the ...
Given an m×n matrix B, the Moore-Penrose generalized matrix inverse is a unique n×m matrix pseudoinverse B^+. This matrix was independently defined by Moore in 1920 and ...
For a positive integer n, (2pi)^((n-1)/2)n^(1/2-nz)Gamma(nz)=product_(k=0)^(n-1)Gamma(z+k/n),
...