Search Results for ""
2371 - 2380 of 5881 for math 0Search Results
A line can be specified in trilinear coordinates by parameters (l,m,n) such that the trilinear coordinates alpha:beta:gamma obey lalpha+mbeta+ngamma=0. (1) The trilinear line ...
Given a triangle center X=l:m:n, the line mnalpha+nlbeta+lmgamma=0, where alpha:beta:gamma are trilinear coordinates, is called the trilinear polar (Kimberling 1998, p. 38). ...
A multivariate normal distribution in three variables. It has probability density function (1) where (2) The standardized trivariate normal distribution takes unit variances ...
For a second-order ordinary differential equation, y^('')+p(x)y^'+q(x)y=g(x). (1) Assume that linearly independent solutions y_1(x) and y_2(x) are known to the homogeneous ...
In general, there is no unique matrix solution A to the matrix equation y=Ax. Even in the case of y parallel to x, there are still multiple matrices that perform this ...
The one-dimensional wave equation is given by (partial^2psi)/(partialx^2)=1/(v^2)(partial^2psi)/(partialt^2). (1) In order to specify a wave, the equation is subject to ...
A weak pseudo-Riemannian metric on a smooth manifold M is a (0,2) tensor field g which is symmetric and for which, at each m in M, g_m(v_m,w_m)=0 for all w_m in T_mM implies ...
The quasiperiodic function defined by d/(dz)lnsigma(z;g_2,g_3)=zeta(z;g_2,g_3), (1) where zeta(z;g_2,g_3) is the Weierstrass zeta function and lim_(z->0)(sigma(z))/z=1. (2) ...
The Weierstrass zeta function zeta(z;g_2,g_3) is the quasiperiodic function defined by (dzeta(z;g_2,g_3))/(dz)=-P(z;g_2,g_3), (1) where P(z;g_2,g_3) is the Weierstrass ...
In the Wolfram Language, WignerD[{j, m ,n}, psi, theta, phi] gives the m×n matrix element of a (2j+1)-dimensional unitary representation of SU(2) parametrized by three Euler ...
...
View search results from all Wolfram sites (491119 matches)

