TOPICS
Search

Search Results for ""


111 - 120 of 5881 for math 0Search Results
The function lambda(n)=(-1)^(Omega(n)), (1) where Omega(n) is the number of not necessarily distinct prime factors of n, with Omega(1)=0. The values of lambda(n) for n=1, 2, ...
Count the number of lattice points N(r) inside the boundary of a circle of radius r with center at the origin. The exact solution is given by the sum N(r) = ...
The Harary index of a graph G on n vertices was defined by Plavšić et al. (1993) as H(G)=1/2sum_(i=1)^nsum_(j=1)^n(RD)_(ij), (1) where (RD)_(ij)={D_(ij)^(-1) if i!=j; 0 if ...
The Eulerian number <n; k> gives the number of permutations of {1,2,...,n} having k permutation ascents (Graham et al. 1994, p. 267). Note that a slightly different ...
If G is a weighted tree with weights w_i>1 assigned to each vertex v_i, then G is perfectly weighted if the matrix M_G=[w_1 0 ... 0; 0 w_2 ... 0; | ... ... |; 0 0 ... ...
A circle having a given number of lattice points on its circumference. The Schinzel circle having n lattice points is given by the equation {(x-1/2)^2+y^2=1/45^(k-1) for n=2k ...
The series h_q(-r)=sum_(n=1)^infty1/(q^n+r) (1) for q an integer other than 0 and +/-1. h_q and the related series Ln_q(-r+1)=sum_(n=1)^infty((-1)^n)/(q^n+r), (2) which is a ...
The tribonacci numbers are a generalization of the Fibonacci numbers defined by T_1=1, T_2=1, T_3=2, and the recurrence equation T_n=T_(n-1)+T_(n-2)+T_(n-3) (1) for n>=4 ...
There exist infinitely many n>0 with p_n^2>p_(n-i)p_(n+i) for all i<n, where p_n is the nth prime. Also, there exist infinitely many n>0 such that 2p_n<p_(n-i)+p_(n+i) for ...
An encoding is a way of representing a number or expression in terms of another (usually simpler) one. However, multiple expressions can also be encoded as a single ...
1 ... 9|10|11|12|13|14|15 ... 589 Previous Next

...