TOPICS
Search

Schinzel Circle


SchinzelCircles

A circle having a given number of lattice points on its circumference. The Schinzel circle having n lattice points is given by the equation

 {(x-1/2)^2+y^2=1/45^(k-1)   for n=2k even; (x-1/3)^2+y^2=1/95^(2k)   for n=2k+1 odd.
(1)

Note that these solutions do not necessarily have the smallest possible radius. For example, while the Schinzel circle centered at (1/3, 0) and with radius 625/3 has nine lattice points on its circumference, so does the circle centered at (1/3, 0) with radius 65/3.

A table of minimal circles to n=12 is given by Pegg (2008).


See also

Circle, Circle Lattice Points, Gauss's Circle Problem, Kulikowski's Theorem, Lattice Point, Schinzel's Theorem, Sphere

Explore with Wolfram|Alpha

WolframAlpha

More things to try:

References

Honsberger, R. "Circles, Squares, and Lattice Points." Ch. 11 in Mathematical Gems I. Washington, DC: Math. Assoc. Amer., pp. 117-127, 1973.Kulikowski, T. "Sur l'existence d'une sphère passant par un nombre donné aux coordonnées entières." L'Enseignement Math. Ser. 2 5, 89-90, 1959.Pegg, E. "Lattice Circles." http://demonstrations.wolfram.com/LatticeCircles/.Schinzel, A. "Sur l'existence d'un cercle passant par un nombre donné de points aux coordonnées entières." L'Enseignement Math. Ser. 2 4, 71-72, 1958.Sierpiński, W. "Sur quelques problèmes concernant les points aux coordonnées entières." L'Enseignement Math. Ser. 2 4, 25-31, 1958.Sierpiński, W. "Sur un problème de H. Steinhaus concernant les ensembles de points sur le plan." Fund. Math. 46, 191-194, 1959.Sierpiński, W. A Selection of Problems in the Theory of Numbers. New York: Pergamon Press, 1964.

Referenced on Wolfram|Alpha

Schinzel Circle

Cite this as:

Weisstein, Eric W. "Schinzel Circle." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/SchinzelCircle.html

Subject classifications