Search Results for ""
8161 - 8170 of 13134 for index theoremSearch Results

A Euclidean number is a number which can be obtained by repeatedly solving the quadratic equation. Euclidean numbers, together with the rational numbers, can be constructed ...
Euclidean n-space, sometimes called Cartesian space or simply n-space, is the space of all n-tuples of real numbers, (x_1, x_2, ..., x_n). Such n-tuples are sometimes called ...
The Euler-Gergonne-Soddy triangle is the right triangle DeltaZFlEv created by the pairwise intersections of the Euler line L_E, Soddy line L_S, and Gergonne line L_G. (The ...
An Euler-Jacobi pseudoprime to a base a is an odd composite number n such that (a,n)=1 and the Jacobi symbol (a/n) satisfies (a/n)=a^((n-1)/2) (mod n) (Guy 1994; but note ...
Define I_n=(-1)^nint_0^infty(lnz)^ne^(-z)dz, (1) then I_n=(-1)^nGamma^((n))(1), (2) where Gamma^((n))(z) is the nth derivative of the gamma function. Particular values ...
An implicit method for solving an ordinary differential equation that uses f(x_n,y_n) in y_(n+1). In the case of a heat equation, for example, this means that a linear system ...
The general nonhomogeneous differential equation is given by x^2(d^2y)/(dx^2)+alphax(dy)/(dx)+betay=S(x), (1) and the homogeneous equation is x^2y^('')+alphaxy^'+betay=0 (2) ...
A method for solving ordinary differential equations using the formula y_(n+1)=y_n+hf(x_n,y_n), which advances a solution from x_n to x_(n+1)=x_n+h. Note that the method ...
The term "Euler function" may be used to refer to any of several functions in number theory and the theory of special functions, including 1. the totient function phi(n), ...
For |z|<1, product_(k=1)^infty(1+z^k)=product_(k=1)^infty(1-z^(2k-1))^(-1). (1) Both of these have closed form representation 1/2(-1;z)_infty, (2) where (a;q)_infty is a ...

...