Search Results for ""
11951 - 11960 of 13134 for index theoremSearch Results
Let u_(B,b)(n) be the number of digit blocks of a sequence B in the base-b expansion of n. The following table gives the sequence {u_(B)(n)} for a number of blocks B. B OEIS ...
The number N_d^((b))(n) of digits d in the base-b representation of a number n is called the b-ary digit count for d. The digit count is implemented in the Wolfram Language ...
A set of m distinct positive integers S={a_1,...,a_m} satisfies the Diophantus property D(n) of order n (a positive integer) if, for all i,j=1, ..., m with i!=j, ...
The Dirac matrices are a class of 4×4 matrices which arise in quantum electrodynamics. There are a variety of different symbols used, and Dirac matrices are also known as ...
The Dirichlet beta function is defined by the sum beta(x) = sum_(n=0)^(infty)(-1)^n(2n+1)^(-x) (1) = 2^(-x)Phi(-1,x,1/2), (2) where Phi(z,s,a) is the Lerch transcendent. The ...
Let the divisor function d(n) be the number of divisors of n (including n itself). For a prime p, d(p)=2. In general, sum_(k=1)^nd(k)=nlnn+(2gamma-1)n+O(n^theta), where gamma ...
The Dirichlet eta function is the function eta(s) defined by eta(s) = sum_(k=1)^(infty)((-1)^(k-1))/(k^s) (1) = (1-2^(1-s))zeta(s), (2) where zeta(s) is the Riemann zeta ...
Given a sequence {a_n}_(n=1)^infty, a formal power series f(s) = sum_(n=1)^(infty)(a_n)/(n^s) (1) = a_1+(a_2)/(2^s)+(a_3)/(3^s)+... (2) is called the Dirichlet generating ...
The continuous Fourier transform is defined as f(nu) = F_t[f(t)](nu) (1) = int_(-infty)^inftyf(t)e^(-2piinut)dt. (2) Now consider generalization to the case of a discrete ...
Discrete mathematics is the branch of mathematics dealing with objects that can assume only distinct, separated values. The term "discrete mathematics" is therefore used in ...
...
View search results from all Wolfram sites (155807 matches)

