Search Results for ""
10121 - 10130 of 13134 for index theoremSearch Results
Given a ring R with identity, the special linear group SL_n(R) is the group of n×n matrices with elements in R and determinant 1. The special linear group SL_n(q), where q is ...
The special orthogonal group SO_n(q) is the subgroup of the elements of general orthogonal group GO_n(q) with determinant 1. SO_3 (often written SO(3)) is the rotation group ...
A square matrix A is a special orthogonal matrix if AA^(T)=I, (1) where I is the identity matrix, and the determinant satisfies detA=1. (2) The first condition means that A ...
The special unitary group SU_n(q) is the set of n×n unitary matrices with determinant +1 (having n^2-1 independent parameters). SU(2) is homeomorphic with the orthogonal ...
A square matrix U is a special unitary matrix if UU^*=I, (1) where I is the identity matrix and U^* is the conjugate transpose matrix, and the determinant is detU=1. (2) The ...
A species of structures is a rule F which 1. Produces, for each finite set U, a finite set F[U], 2. Produces, for each bijection sigma:U->V, a function F[sigma]:F[U]->F[V]. ...
The natural norm induced by the L2-norm. Let A^(H) be the conjugate transpose of the square matrix A, so that (a_(ij))^(H)=(a^__(ji)), then the spectral norm is defined as ...
Let A be an n×n matrix with complex or real elements with eigenvalues lambda_1, ..., lambda_n. Then the spectral radius rho(A) of A is rho(A)=max_(1<=i<=n)|lambda_i|, i.e., ...
Define the notation [n]f_0=f_(-(n-1)/2)+...+f_0+...+f_((n-1)/2) (1) and let delta be the central difference, so delta^2f_0=f_1-2f_0+f_(-1). (2) Spencer's 21-term moving ...
A sphenic number is a positive integer n which is the product of exactly three distinct primes. The first few sphenic numbers are 30, 42, 66, 70, 78, 102, 105, 110, 114, ... ...
...
View search results from all Wolfram sites (155807 matches)

