TOPICS
Search

Spencer's Formula


Define the notation

 [n]f_0=f_(-(n-1)/2)+...+f_0+...+f_((n-1)/2)
(1)

and let delta be the central difference, so

 delta^2f_0=f_1-2f_0+f_(-1).
(2)

Spencer's 21-term moving average formula is then given by

 f_0^'=([5][5][7])/(5·5·7)(1-4delta^2)f_0,
(3)

which, written explicitly, gives

 f_0^'=1/(350)[60f_0+57(f_(-1)+f_1)+47(f_(-2)+f_2)+33(f_(-3)+f_3)+18(f_(-4)+f_4)+6(f_(-5)+f_5)-2(f_(-6)+f_6)-5(f_(-7)+f_7)-5(f_(-8)+f_8)-3(f_(-9)+f_9)-(f_(-10)+f_(10))]
(4)

See also

Moving Average, Smoothing

Explore with Wolfram|Alpha

References

Spencer, J. J. I. A. 38, 334, 1904.Spencer, J. J. I. A. 38, 339, 1904.Spencer, J. J. I. A. 41, 361, 1907.Whittaker, E. T. and Robinson, G. "Spencer's Formula." §144 in The Calculus of Observations: A Treatise on Numerical Mathematics, 4th ed. New York: Dover, pp. 290-294, 1967.

Referenced on Wolfram|Alpha

Spencer's Formula

Cite this as:

Weisstein, Eric W. "Spencer's Formula." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/SpencersFormula.html

Subject classifications