Search Results for ""
131 - 140 of 266 for hypergeometricSearch Results
Krall and Fink (1949) defined the Bessel polynomials as the function y_n(x) = sum_(k=0)^(n)((n+k)!)/((n-k)!k!)(x/2)^k (1) = sqrt(2/(pix))e^(1/x)K_(-n-1/2)(1/x), (2) where ...
A variable with a beta binomial distribution is distributed as a binomial distribution with parameter p, where p is distribution with a beta distribution with parameters ...
Using a Tschirnhausen transformation, the principal quintic form can be transformed to the one-parameter form w^5-10cw^3+45c^2w-c^2=0 (1) named after Francesco Brioschi ...
The orthogonal polynomials defined by c_n^((mu))(x) = _2F_0(-n,-x;;-mu^(-1)) (1) = ((-1)^n)/(mu^n)(x-n+1)_n_1F_1(-n;x-n+1;mu), (2) where (x)_n is the Pochhammer symbol ...
A curve whose name means skull-like. It is given by the polar equation r=asint+bsqrt(1-pcos^2t)+csqrt(1-qcos^2t), where a,b,c>0, a<b+c, 0<p<1, 0<q<1, and p!=q. The top of the ...
Consider two cylinders as illustrated above (Hubbell 1965) where the cylinders have radii r_1 and r_2 with r_1<=r_2, the larger cylinder is oriented along the z-axis, and ...
The operator representing the computation of a derivative, D^~=d/(dx), (1) sometimes also called the Newton-Leibniz operator. The second derivative is then denoted D^~^2, the ...
A statistical distribution whose variables can take on only discrete values. Abramowitz and Stegun (1972, p. 929) give a table of the parameters of most common discrete ...
The second-order ordinary differential equation y^('')+2xy^'-2ny=0, (1) whose solutions may be written either y=Aerfc_n(x)+Berfc_n(-x), (2) where erfc_n(x) is the repeated ...
For |z|<1, product_(k=1)^infty(1+z^k)=product_(k=1)^infty(1-z^(2k-1))^(-1). (1) Both of these have closed form representation 1/2(-1;z)_infty, (2) where (a;q)_infty is a ...
...
View search results from all Wolfram sites (259089 matches)

