Search Results for ""
91 - 100 of 150 for factorableSearch Results
A number n with prime factorization n=product_(i=1)^rp_i^(a_i) is called k-almost prime if it has a sum of exponents sum_(i=1)^(r)a_i=k, i.e., when the prime factor ...
(dy)/(dx)+p(x)y=q(x)y^n. (1) Let v=y^(1-n) for n!=1. Then (dv)/(dx)=(1-n)y^(-n)(dy)/(dx). (2) Rewriting (1) gives y^(-n)(dy)/(dx) = q(x)-p(x)y^(1-n) (3) = q(x)-vp(x). (4) ...
The qubit |psi>=a|0>+b|1> can be represented as a point (theta,phi) on a unit sphere called the Bloch sphere. Define the angles theta and phi by letting a=cos(theta/2) and ...
Catalan (1876, 1891) noted that the sequence of Mersenne numbers 2^2-1=3, 2^3-1=7, and 2^7-1=127, and (OEIS A007013) were all prime (Dickson 2005, p. 22). Therefore, the ...
Given a factor a of a number n=ab, the cofactor of a is b=n/a. A different type of cofactor, sometimes called a cofactor matrix, is a signed version of a minor M_(ij) defined ...
A composite knot is a knot that is not a prime knot. Schubert (1949) showed that every knot can be uniquely decomposed (up to the order in which the decomposition is ...
The probability that a random integer between 1 and x will have its greatest prime factor <=x^alpha approaches a limiting value F(alpha) as x->infty, where F(alpha)=1 for ...
The EKG sequence is the integer sequence having 1 as its first term, 2 as its second, and with each succeeding term being the smallest number not already used that shares a ...
Let Delta denote an integral convex polytope of dimension n in a lattice M, and let l_Delta(k) denote the number of lattice points in Delta dilated by a factor of the integer ...
The elliptic curve factorization method, abbreviated ECM and sometimes also called the Lenstra elliptic curve method, is a factorization algorithm that computes a large ...
...
View search results from all Wolfram sites (1524 matches)

