TOPICS
Search

Search Results for ""


501 - 510 of 3354 for dirichlet functionSearch Results
The Riemann-Siegel integral formula is the following representation of the xi-function xi(s) found in Riemann's Nachlass by Bessel-Hagen in 1926 (Siegel 1932; Edwards 2001, ...
The tau conjecture, also known as Ramanujan's hypothesis after its proposer, states that tau(n)∼O(n^(11/2+epsilon)), where tau(n) is the tau function. This was proven by ...
The transform inverting the sequence g(n)=sum_(d|n)f(d) (1) into f(n)=sum_(d|n)mu(d)g(n/d), (2) where the sums are over all possible integers d that divide n and mu(d) is the ...
Define q=e^(2piitau) (cf. the usual nome), where tau is in the upper half-plane. Then the modular discriminant is defined by ...
A Fourier series is an expansion of a periodic function f(x) in terms of an infinite sum of sines and cosines. Fourier series make use of the orthogonality relationships of ...
Hadjicostas's formula is a generalization of the unit square double integral gamma=int_0^1int_0^1(x-1)/((1-xy)ln(xy))dxdy (1) (Sondow 2003, 2005; Borwein et al. 2004, p. 49), ...
A cusp form is a modular form for which the coefficient c(0)=0 in the Fourier series f(tau)=sum_(n=0)^inftyc(n)e^(2piintau) (1) (Apostol 1997, p. 114). The only entire cusp ...
Given relatively prime integers p and q (i.e., (p,q)=1), the Dedekind sum is defined by s(p,q)=sum_(i=1)^q((i/q))(((pi)/q)), (1) where ((x))={x-|_x_|-1/2 x not in Z; 0 x in ...
Let f(z) be an entire function such that f(n) is an integer for each positive integer n. Then Pólya (1915) showed that if lim sup_(r->infty)(lnM_r)/r<ln2=0.693... (1) (OEIS ...
Clausen's integral, sometimes called the log sine integral (Borwein and Bailey 2003, p. 88) is the n=2 case of the S_2 Clausen function Cl_2(theta) = ...
1 ... 48|49|50|51|52|53|54 ... 336 Previous Next

...