TOPICS
Search

Masser-Gramain Constant


Let f(z) be an entire function such that f(n) is an integer for each positive integer n. Then Pólya (1915) showed that if

 limsup_(r->infty)(lnM_r)/r<ln2=0.693...
(1)

(OEIS A002162), where

 M_r=sup_(|z|<=r)|f(x)|
(2)

is the supremum, then f is a polynomial. Furthermore, ln2 is the best constant (i.e., counterexamples exist for every smaller value).

If f(z) is an entire function with f(n) a Gaussian integer for each Gaussian integer n, then Gelfond (1929) proved that there exists a constant alpha such that

 limsup_(r->infty)(lnM_r)/(r^2)<alpha
(3)

implies that f is a polynomial. Gramain (1981, 1982) showed that the best such constant is

 alpha=pi/(2e)=0.5778...
(4)

(OEIS A086056).

Maser (1980) proved the weaker result that f must be a polynomial if

 limsup_(r->infty)(lnM_r)/(r^2)<alpha_0,
(5)

where

 alpha_0=1/2exp(-delta+(4c)/pi),
(6)

and

c=gammabeta(1)+beta^'(1)
(7)
=1/4pi{2gamma+2ln2+3lnpi-4ln[Gamma(1/4)]}
(8)
 approx 0.64624543989481...
(9)

(OEIS A086057), gamma is the Euler-Mascheroni constant, beta(z) is the Dirichlet beta function, Gamma(z) is the gamma function,

 delta=lim_(n->infty)(sum_(k=2)^n1/(pir_k^2)-lnn)
(10)

is known as the Masser-Gramain constant, and r_k is the minimum nonnegative r for which there exists a complex number z for which the closed disk with center z and radius r contains at least k distinct Gaussian integers.

Gramain and Weber (1985, 1987) have obtained

 1.811447299<delta<1.897327117,
(11)

which implies

 0.1707339<alpha_0<0.1860446.
(12)

Gramain (1981, 1982) conjectured that

 alpha_0=1/(2e),
(13)

which would imply

 delta=1+(4c)/pi=1.822825249...
(14)

(OEIS A086058).


Explore with Wolfram|Alpha

References

Finch, S. R. "Masser-Gramain Constant." §7.2 Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 459-461, 2003.Gosper, R. W. "http://www.mathsoft.com/asolve/constant/constant.html." math-fun@cs.arizona.edu posting, Sept. 27, 1996.Gel'fond, A. O. "Sur un théorème de M. G. Pólya." Atti Accad. Naz. Lincei Rend. 10, 568-574, 1929.Gramain, F. "Sur le théorème de Fukagawa-Gel'fond." Invent. Math. 63, 495-506, 1981.Gramain, F. "Sur le théorème de Fukagawa-Gel'fond-Gruman-Masser." Séminaire Delange-Pisot-Poitou (Théorie des Nombres), 1980-1981. Boston, MA: Birkhäuser, 1982.Gramain, F. and Weber, M. "Computing and Arithmetic Constant Related to the Ring of Gaussian Integers." Math. Comput. 44, 241-245, 1985.Gramain, F. and Weber, M. "Computing and Arithmetic Constant Related to the Ring of Gaussian Integers." Math. Comput. 48, 854, 1987.Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, pp. 116-117, 2003.Masser, D. W. "Sur les fonctions entières à valeurs entières." C. R. Acad. Sci. Paris Sér. A-B 291, A1-A4, 1980.Pólya, G. "Über ganzwertige ganze Funktionen." Rend. Circ. Mat. Palermo 40, 1-16, 1915.Sloane, N. J. A. Sequences A002162/M4074, A086056, A086057, and A086058 in "The On-Line Encyclopedia of Integer Sequences."

Referenced on Wolfram|Alpha

Masser-Gramain Constant

Cite this as:

Weisstein, Eric W. "Masser-Gramain Constant." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Masser-GramainConstant.html

Subject classifications