Search Results for ""
4041 - 4050 of 13135 for dimensional analysisSearch Results

A great circle is a section of a sphere that contains a diameter of the sphere (Kern and Bland 1948, p. 87). Sections of the sphere that do not contain a diameter are called ...
A second-order linear Hermitian operator is an operator L^~ that satisfies int_a^bv^_L^~udx=int_a^buL^~v^_dx. (1) where z^_ denotes a complex conjugate. As shown in ...
The hyperbolic sine is defined as sinhz=1/2(e^z-e^(-z)). (1) The notation shz is sometimes also used (Gradshteyn and Ryzhik 2000, p. xxix). It is implemented in the Wolfram ...
By way of analogy with the usual tangent tanz=(sinz)/(cosz), (1) the hyperbolic tangent is defined as tanhz = (sinhz)/(coshz) (2) = (e^z-e^(-z))/(e^z+e^(-z)) (3) = ...
Interval arithmetic is the arithmetic of quantities that lie within specified ranges (i.e., intervals) instead of having definite known values. Interval arithmetic can be ...
The inverse cosecant is the multivalued function csc^(-1)z (Zwillinger 1995, p. 465), also denoted arccscz (Abramowitz and Stegun 1972, p. 79; Spanier and Oldham 1987, p. ...
The inverse cosine is the multivalued function cos^(-1)z (Zwillinger 1995, p. 465), also denoted arccosz (Abramowitz and Stegun 1972, p. 79; Harris and Stocker 1998, p. 307; ...
The inverse hyperbolic cosecant csch^(-1)z (Zwillinger 1995, p. 481), sometimes called the area hyperbolic cosecant (Harris and Stocker 1998, p. 271) and sometimes denoted ...
The inverse hyperbolic cosine cosh^(-1)z (Beyer 1987, p. 181; Zwillinger 1995, p. 481), sometimes called the area hyperbolic cosine (Harris and Stocker 1998, p. 264) is the ...
The inverse hyperbolic cotangent coth^(-1)z (Beyer 1987, p. 181; Zwillinger 1995, p. 481), sometimes called the area hyperbolic cotangent (Harris and Stocker 1998, p. 267), ...

...