TOPICS
Search

Search Results for ""


7211 - 7220 of 13134 for decoherence theorySearch Results
The correspondence which relates the Hanoi graph to the isomorphic graph of the odd binomial coefficients in Pascal's triangle, where the adjacencies are determined by ...
Let p be prime and r = r_mp^m+...+r_1p+r_0 (0<=r_i<p) (1) k = k_mp^m+...+k_1p+k_0 (0<=k_i<p), (2) then (r; k)=product_(i=0)^m(r_i; k_i) (mod p). (3) This is proved in Fine ...
For an arbitrary not identically constant polynomial, the zeros of its derivatives lie in the smallest convex polygon containing the zeros of the original polynomial.
Expresses a function in terms of its Radon transform, f(x,y) = R^(-1)(Rf)(x,y) (1) = ...
Let rho(x) be an mth degree polynomial which is nonnegative in [-1,1]. Then rho(x) can be represented in the form {[A(x)]^2+(1-x^2)[B(x)]^2 for m even; ...
If Omega subset= C is a domain and phi:Omega->C is a one-to-one analytic function, then phi(Omega) is a domain, and area(phi(Omega))=int_Omega|phi^'(z)|^2dxdy (Krantz 1999, ...
Given a Lyapunov characteristic exponent sigma_i, the corresponding Lyapunov characteristic number lambda_i is defined as lambda_i=e^(sigma_i). (1) For an n-dimensional ...
For a two-dimensional map with sigma_2>sigma_1, d_(Lya)=1-(sigma_1)/(sigma_2), where sigma_n are the Lyapunov characteristic exponents.
A necessary and sufficient condition for all the eigenvalues of a real n×n matrix A to have negative real parts is that the equation A^(T)V+VA=-I has as a solution where V is ...
If all the eigenvalues of a real matrix A have real parts, then to an arbitrary negative definite quadratic form (x,Wx) with x=x(t) there corresponds a positive definite ...
1 ... 719|720|721|722|723|724|725 ... 1314 Previous Next

...