Let
be prime and
then
(3)
This is proved in Fine (1947).
This theorem is the underlying reason that the binomial coefficient mod 2 can be computed using bitwise operations AND(NOT( ), ),
giving the Sierpiński sieve .
See also Lucas Correspondence ,
Sierpiński Sieve
Explore with Wolfram|Alpha
References Fine, N. J. "Binomial Coefficients Modulo a Prime." Amer. Math. Monthly 54 , 589-592, 1947. Referenced on Wolfram|Alpha Lucas Correspondence Theorem
Cite this as:
Weisstein, Eric W. "Lucas Correspondence Theorem."
From MathWorld --A Wolfram Web Resource. https://mathworld.wolfram.com/LucasCorrespondenceTheorem.html
Subject classifications