Search Results for ""
2351 - 2360 of 13134 for complexity theorySearch Results
There exists an absolute constant C such that for any positive integer m, the discrepancy of any sequence {alpha_n} satisfies ...
An endomorphism is called ergodic if it is true that T^(-1)A=A implies m(A)=0 or 1, where T^(-1)A={x in X:T(x) in A}. Examples of ergodic endomorphisms include the map X->2x ...
The group of rotations and translations.
The Euclidean metric is the function d:R^n×R^n->R that assigns to any two vectors in Euclidean n-space x=(x_1,...,x_n) and y=(y_1,...,y_n) the number ...
For any two integers a and b, suppose d|ab. Then if d is relatively prime to a, then d divides b. This results appeared in Euclid's Elements, Book VII, Proposition 30. This ...
Let U(P,Q) and V(P,Q) be Lucas sequences generated by P and Q, and define D=P^2-4Q. (1) Then {U_((n-(D/n))/2)=0 (mod n) when (Q/n)=1; V_((n-(D/n))/2)=D (mod n) when (Q/n)=-1, ...
Euler integration was defined by Schanuel and subsequently explored by Rota, Chen, and Klain. The Euler integral of a function f:R->R (assumed to be piecewise-constant with ...
A special case of the Artin L-function for the polynomial x^2+1. It is given by L(s)=product_(p odd prime)1/(1-chi^-(p)p^(-s)), (1) where chi^-(p) = {1 for p=1 (mod 4); -1 ...
An Euler pseudoprime to the base b is a composite number n which satisfies b^((n-1)/2)=+/-1 (mod n). The first few base-2 Euler pseudoprimes are 341, 561, 1105, 1729, 1905, ...
Define g(k) as the quantity appearing in Waring's problem, then Euler conjectured that g(k)=2^k+|_(3/2)^k_|-2, where |_x_| is the floor function.
...
View search results from all Wolfram sites (28442 matches)

