TOPICS
Search

Erdős-Turán Discrepancy Bound


There exists an absolute constant C such that for any positive integer m, the discrepancy of any sequence {alpha_n} satisfies

 D_N<C(1/m+sum_(h=1)^m1/h|1/Nsum_(n=0)^(N-1)e^(2piihalpha_n)|)

(Kuipers and Niederreiter 1974, pp. 112-113; Bailey and Crandall 2002).


See also

Discrepancy

Explore with Wolfram|Alpha

WolframAlpha

More things to try:

References

Bailey, D. H. and Crandall, R. E. "Random Generators and Normal Numbers." Exper. Math. 11, 527-546, 2002.Kuipers, L. and Niederreiter, H. Uniform Distribution of Sequences. New York: Wiley, 1974.

Referenced on Wolfram|Alpha

Erdős-Turán Discrepancy Bound

Cite this as:

Weisstein, Eric W. "Erdős-Turán Discrepancy Bound." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Erdos-TuranDiscrepancyBound.html

Subject classifications