TOPICS
Search

Euclidean Metric


The Euclidean metric is the function d:R^n×R^n->R that assigns to any two vectors in Euclidean n-space x=(x_1,...,x_n) and y=(y_1,...,y_n) the number

 d(x,y)=sqrt((x_1-y_1)^2+...+(x_n-y_n)^2),
(1)

and so gives the "standard" distance between any two vectors in R^n.

The Euclidean metric in Euclidean three-space R^3 is given by

 (g)_(alphabeta)=[1 0 0; 0 1 0; 0 0 1],
(2)

giving the line element

ds^2=g_(alphabeta)dx^alphadx^beta
(3)
=(dx^1)^2+(dx^2)^2+(dx^3)^2,
(4)

where Einstein summation has been used.


See also

Distance, Euclidean Space, Minkowski Metric, Vector Norm

Explore with Wolfram|Alpha

Cite this as:

Weisstein, Eric W. "Euclidean Metric." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/EuclideanMetric.html

Subject classifications