Search Results for ""
3261 - 3270 of 13135 for calculusSearch Results
The inverse hyperbolic secant sech^(-1)z (Beyer 1987, p. 181; Zwillinger 1995, p. 481), sometimes called the area hyperbolic secant (Harris and Stocker 1998, p. 271) and ...
The inverse hyperbolic sine sinh^(-1)z (Beyer 1987, p. 181; Zwillinger 1995, p. 481), sometimes called the area hyperbolic sine (Harris and Stocker 1998, p. 264) is the ...
The inverse hyperbolic tangent tanh^(-1)z (Zwillinger 1995, p. 481; Beyer 1987, p. 181), sometimes called the area hyperbolic tangent (Harris and Stocker 1998, p. 267), is ...
The inverse secant sec^(-1)z (Zwillinger 1995, p. 465), also denoted arcsecz (Abramowitz and Stegun 1972, p. 79; Harris and Stocker 1998, p. 315; Jeffrey 2000, p. 124), is ...
Jacobi's imaginary transformations relate elliptic functions to other elliptic functions of the same type but having different arguments. In the case of the Jacobi elliptic ...
A closed two-form omega on a complex manifold M which is also the negative imaginary part of a Hermitian metric h=g-iomega is called a Kähler form. In this case, M is called ...
Let omega_1 and omega_2 be periods of a doubly periodic function, with tau=omega_2/omega_1 the half-period ratio a number with I[tau]!=0. Then Klein's absolute invariant ...
A Lambert series is a series of the form F(x)=sum_(n=1)^inftya_n(x^n)/(1-x^n) (1) for |x|<1. Then F(x) = sum_(n=1)^(infty)a_nsum_(m=1)^(infty)x^(mn) (2) = ...
Let z=re^(itheta)=x+iy be a complex number, then inequality |(zexp(sqrt(1-z^2)))/(1+sqrt(1-z^2))|<=1 (1) holds in the lens-shaped region illustrated above. Written explicitly ...
The Laplacian for a scalar function phi is a scalar differential operator defined by (1) where the h_i are the scale factors of the coordinate system (Weinberg 1972, p. 109; ...
...
View search results from all Wolfram sites (19164 matches)

