TOPICS
Search

Search Results for ""


101 - 110 of 1590 for calculational equationSearch Results
The second-order ordinary differential equation (1-x^2)y^('')-2(mu+1)xy^'+(nu-mu)(nu+mu+1)y=0 (1) sometimes called the hyperspherical differential equation (Iyanaga and ...
The second-order ordinary differential equation (d^2y)/(dx^2)+[theta_0+2sum_(n=1)^inftytheta_ncos(2nx)]y=0, (1) where theta_n are fixed constants. A general solution can be ...
The partial differential equation (u_t)/(u_x)=1/4(u_(xxx))/(u_x)-3/8(u_(xx)^2)/(u_x^2)+3/2(p(u))/(u_x^2), where p(u)=1/4(4u^3-g_2u-g_3). The special cases ...
The Abel equation of the first kind is given by y^'=f_0(x)+f_1(x)y+f_2(x)y^2+f_3(x)y^3+... (Murphy 1960, p. 23; Zwillinger 1997, p. 120), and the Abel equation of the second ...
The second-order ordinary differential equation (x^2y^')^'+x^2y^n=0.
The partial differential equation u_(tt)-u_(xx)=epsilon(u_t-u_t^3).
The partial differential equation del ^2u+lambda^2sinhu=0, where del ^2 is the Laplacian (Ting et al. 1987; Zwillinger 1997, p. 135).
The Legendre differential equation is the second-order ordinary differential equation (1-x^2)(d^2y)/(dx^2)-2x(dy)/(dx)+l(l+1)y=0, (1) which can be rewritten ...
The one-dimensional wave equation is given by (partial^2psi)/(partialx^2)=1/(v^2)(partial^2psi)/(partialt^2). (1) In order to specify a wave, the equation is subject to ...
The general nonhomogeneous differential equation is given by x^2(d^2y)/(dx^2)+alphax(dy)/(dx)+betay=S(x), (1) and the homogeneous equation is x^2y^('')+alphaxy^'+betay=0 (2) ...
1 ... 8|9|10|11|12|13|14 ... 159 Previous Next

...