Search Results for ""
5661 - 5670 of 13134 for binomial theorySearch Results
Two distinct theorems are referred to as "the de Bruijn-Erdős theorem." One of them (de Bruijn and Erdős 1951) concerns the chromatic number of infinite graphs; the other (de ...
e^(i(ntheta))=(e^(itheta))^n. (1) From the Euler formula it follows that cos(ntheta)+isin(ntheta)=(costheta+isintheta)^n. (2) A similar identity holds for the hyperbolic ...
The h-statistic h_r is the unique symmetric unbiased estimator for a central moment of a distribution <h_r>=mu_r. (1) In addition, the variance var(h_r)=<(h_r-mu_r)^2> (2) is ...
An invariant of an elliptic curve given in the form y^2=x^3+ax+b which is closely related to the elliptic discriminant and defined by j(E)=(2^83^3a^3)/(4a^3+27b^2). The ...
There are several q-analogs of the cosine function. The two natural definitions of the q-cosine defined by Koekoek and Swarttouw (1998) are given by cos_q(z) = ...
D_q=1/(1-q)lim_(epsilon->0)(lnI(q,epsilon))/(ln(1/epsilon),) (1) where I(q,epsilon)=sum_(i=1)^Nmu_i^q, (2) epsilon is the box size, and mu_i is the natural measure. The ...
The q-analog of integration is given by int_0^1f(x)d(q,x)=(1-q)sum_(i=0)^inftyf(q^i)q^i, (1) which reduces to int_0^1f(x)dx (2) in the case q->1^- (Andrews 1986 p. 10). ...
The q-analog of pi pi_q can be defined by setting a=0 in the q-factorial [a]_q!=1(1+q)(1+q+q^2)...(1+q+...+q^(a-1)) (1) to obtain ...
The q-digamma function psi_q(z), also denoted psi_q^((0))(z), is defined as psi_q(z)=1/(Gamma_q(z))(partialGamma_q(z))/(partialz), (1) where Gamma_q(z) is the q-gamma ...
Define the nome by q=e^(-piK^'(k)/K(k))=e^(ipitau), (1) where K(k) is the complete elliptic integral of the first kind with modulus k, K^'(k)=K(sqrt(1-k^2)) is the ...
...
View search results from all Wolfram sites (34966 matches)

