de Moivre's Identity


From the Euler formula it follows that


A similar identity holds for the hyperbolic functions,


See also

Euler Formula

Explore with Wolfram|Alpha


Arfken, G. Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 356-357, 1985.Courant, R. and Robbins, H. What Is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed. Oxford, England: Oxford University Press, pp. 96-100, 1996.Nagell, T. Introduction to Number Theory. New York: Wiley, p. 156, 1951.

Referenced on Wolfram|Alpha

de Moivre's Identity

Cite this as:

Weisstein, Eric W. "de Moivre's Identity." From MathWorld--A Wolfram Web Resource.

Subject classifications