Search Results for ""
281 - 290 of 13135 for binary numberSearch Results
Algebraic number theory is the branch of number theory that deals with algebraic numbers. Historically, algebraic number theory developed as a set of tools for solving ...
A cyclic number is an (n-1)-digit integer that, when multiplied by 1, 2, 3, ..., n-1, produces the same digits in a different order. Cyclic numbers are generated by the full ...
A congruent number can be defined as an integer that is equal to the area of a rational right triangle (Koblitz 1993). Numbers (a,x,y,z,t) such that {x^2+ay^2=z^2; ...
The Pell numbers are the numbers obtained by the U_ns in the Lucas sequence with P=2 and Q=-1. They correspond to the Pell polynomial P_n(x) and Fibonacci polynomial F_n(x) ...
Sequences of integers generated in the Collatz problem. For example, for a starting number of 7, the sequence is 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, ...
A number k such that nk^2 has its last digit(s) equal to k is called n-automorphic. For example, 1·5__^2=25__ (Wells 1986, pp. 58-59) and 1·6__^2=36__ (Wells 1986, p. 68), so ...
A number n is called k-hyperperfect if n = 1+ksum_(i)d_i (1) = 1+k[sigma(n)-n-1], (2) where sigma(n) is the divisor function and the summation is over the proper divisors ...
The term "natural number" refers either to a member of the set of positive integers 1, 2, 3, ... (OEIS A000027) or to the set of nonnegative integers 0, 1, 2, 3, ... (OEIS ...
In his monumental treatise Disquisitiones Arithmeticae, Gauss conjectured that the class number h(-d) of an imaginary quadratic field with binary quadratic form discriminant ...
The numbers H_n=H_n(0), where H_n(x) is a Hermite polynomial, may be called Hermite numbers. For n=0, 1, ..., the first few are 1, 0, -2, 0, 12, 0, -120, 0, 1680, 0, ... ...
...