TOPICS

Pell Number


The Pell numbers are the numbers obtained by the U_ns in the Lucas sequence with P=2 and Q=-1. They correspond to the Pell polynomial P_n(1). Similarly, the Pell-Lucas numbers are the V_ns in the Lucas sequence with P=2 and Q=-1, and correspond to the Pell-Lucas polynomial Q_n(1).

The Pell numbers and Pell-Lucas numbers are also equal to

P_n=F_n(2)
(1)
Q_n=F_(n-1)(2)+F_(n+1)(2),
(2)

where F_n(x) is a Fibonacci polynomial.

The Pell and Pell-Lucas numbers satisfy the recurrence relation

 P_n=2P_(n-1)+P_(n-2)
(3)

with initial conditions P_0=0 and P_1=1 for the Pell numbers and Q_0=Q_1=2 for the Pell-Lucas numbers.

The nth Pell and Pell-Lucas numbers are explicitly given by the Binet-type formulas

P_n=((1+sqrt(2))^n-(1-sqrt(2))^n)/(2sqrt(2))
(4)
Q_n=(1-sqrt(2))^n+(1+sqrt(2))^n.
(5)

The nth Pell and Pell-Lucas numbers are given by the binomial sums

P_n=sum_(k=0)^(|_(n-1)/2_|)(n; 2k+1)2^k
(6)
Q_n=2sum_(k=0)^(|_n/2_|)(n; 2k)2^k,
(7)

respectively.

The Pell and Pell-Lucas numbers satisfy the identities

P_(m+n)=P_mP_(n+1)+P_(m-1)P_n
(8)
P_(m+n)=2P_mQ_n-(-1)^nP_(m-n)
(9)
P_(m·2^t)=P_mproduct_(j=0)^(t-1)Q_(m·2^j)
(10)

and

Q_n^2=4[2P_n^2+(-1)^n]
(11)
Q_(2n)=Q_n^2-2(-1)^n.
(12)

For n=0, 1, ..., the Pell numbers are 0, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, ... (OEIS A000129).

For a Pell number P_n to be prime, it is necessary that n be prime. The indices of (probable) prime Pell numbers are 2, 3, 5, 11, 13, 29, 41, 53, 59, 89, 97, 101, 167, 181, 191, 523, 929, 1217, 1301, 1361, 2087, 2273, 2393, 8093, 13339, 14033, 23747, 28183, 34429, 36749, 90197, ... (OEIS A096650), with no others less than 188856 (E. W. Weisstein, Mar. 21, 2009). The largest proven prime has index 13339 and 5106 digits (http://primes.utm.edu/primes/page.php?id=24572), whereas the largest known probable prime has index 90197 and 34525 digits (T. D. Noe, Sep. 2004).

For n=0, 1, ..., the Pell-Lucas numbers are 2, 2, 6, 14, 34, 82, 198, 478, 1154, 2786, 6726, ... (OEIS A002203). As can be seen, they are always even.

For a Pell-Lucas number Q_n/2 to be prime, it is necessary that n be either prime or a power of 2. The indices of Q_n/2 that are (probable) primes are 2, 3, 4, 5, 7, 8, 16, 19, 29, 47, 59, 163, 257, 421, 937, 947, 1493, 1901, 6689, 8087, 9679, 28753, 79043, 129127, 145969, 165799, 168677, 170413, 172243, 278321, ... (OEIS A099088). The largest proven prime has index 9679 and 3705 decimal digits (http://primes.utm.edu/primes/page.php?id=27783). These indices k are a superset via 2k^'+1 of the indices k^' of prime NSW numbers. The following table summarizes the largest known Pell-Lucas (probable) primes.

ndecimal digitsdiscovererdate
12912749427E. W. WeissteinMay 19, 2006
14596955874E. W. WeissteinAug. 29, 2006
16579963464E. W. WeissteinNov. 16, 2006
16867764566E. W. WeissteinNov. 26, 2006
17041365230E. W. WeissteinDec. 10, 2006
17224365931E. W. WeissteinJan. 15, 2007
278321106535R. PriceDec. 7, 2018

The only triangular Pell number is 1 (McDaniel 1996).


See also

Brahmagupta Polynomial, Integer Sequence Primes, NSW Number, Pell Polynomial

Explore with Wolfram|Alpha

References

McDaniel, W. L. "Triangular Numbers in the Pell Sequence." Fib. Quart. 34, 105-107, 1996.Ram, R. "Pell Numbers Formulae." http://users.tellurian.net/hsejar/maths/pell/.Ribenboim, P. The New Book of Prime Number Records. New York: Springer-Verlag, pp. 53-57, 1996.Sloane, N. J. A. Sequences A000129/M1413, A002203/M0360, A096650, and A099088 in "The On-Line Encyclopedia of Integer Sequences."

Referenced on Wolfram|Alpha

Pell Number

Cite this as:

Weisstein, Eric W. "Pell Number." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/PellNumber.html

Subject classifications