Search Results for ""
761 - 770 of 3501 for art and mathSearch Results
Cubic lattice sums include the following: b_2(2s) = sum^'_(i,j=-infty)^infty((-1)^(i+j))/((i^2+j^2)^s) (1) b_3(2s) = ...
There are several regular mathematics competitions available to students. The International Mathematical Olympiad is perhaps the largest, while the William Lowell Putnam ...
A type of integral containing gamma functions in its integrand. A typical such integral is given by ...
Let pi_(m,n)(x) denote the number of primes <=x which are congruent to n modulo m (i.e., the modular prime counting function). Then one might expect that ...
A pseudoperfect number, sometimes also called a semiperfect number (Benkoski 1972, Butske et al. 1999), is a positive integer such as 20=1+4+5+10 which is the sum of some (or ...
The prime number theorem shows that the nth prime number p_n has the asymptotic value p_n∼nlnn (1) as n->infty (Havil 2003, p. 182). Rosser's theorem makes this a rigorous ...
Saalschütz's theorem is the generalized hypergeometric function identity _3F_2[a,b,-n; c,1+a+b-c-n;1]=((c-a)_n(c-b)_n)/((c)_n(c-a-b)_n) (1) which holds for n a nonnegative ...
A circle having a given number of lattice points on its circumference. The Schinzel circle having n lattice points is given by the equation {(x-1/2)^2+y^2=1/45^(k-1) for n=2k ...
For every positive integer n, there exists a circle in the plane having exactly n lattice points on its circumference. The theorem is based on the number r(n) of integral ...
Schur's partition theorem lets A(n) denote the number of partitions of n into parts congruent to +/-1 (mod 6), B(n) denote the number of partitions of n into distinct parts ...
...