Bailey, W. N. "Saalschütz's Theorem." §2.2 in Generalised
Hypergeometric Series. Cambridge, England: Cambridge University Press, p. 9,
1935.Dougall, J. "On Vandermonde's Theorem and Some More General
Expansions." Proc. Edinburgh Math. Soc.25, 114-132, 1907.Hardy,
G. H. Ramanujan:
Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York:
Chelsea, p. 104, 1999.Koepf, W. Hypergeometric
Summation: An Algorithmic Approach to Summation and Special Function Identities.
Braunschweig, Germany: Vieweg, p. 32, 1998.Petkovšek, M.;
Wilf, H. S.; and Zeilberger, D. A=B.
Wellesley, MA: A K Peters, pp. 43 and 126, 1996. http://www.cis.upenn.edu/~wilf/AeqB.html.Saalschütz,
L. "Eine Summationsformel." Z. für Math. u. Phys.35,
186-188, 1890.Saalschütz, L. "Über einen Spezialfall
der hypergeometrischen Reihe dritter Ordnung." Z. für Math. u. Phys.36,
278-295 and 321-327, 1891.Shepard, W. F. "Summation of the
Coefficients of Some Terminating Hypergeometric Series." Proc. London Math.
Soc.10, 469-478, 1912.