Search Results for ""
1701 - 1710 of 3501 for art and mathSearch Results
_2phi_1(a,q^(-n);c;q,q)=(a^n(c/a,q)_n)/((a;q)_n), where _2phi_1(a,b;c;q,z) is a q-hypergeometric function.
A Mersenne prime is a Mersenne number, i.e., a number of the form M_n=2^n-1, that is prime. In order for M_n to be prime, n must itself be prime. This is true since for ...
A (-1,0,1)-matrix is a matrix whose elements consist only of the numbers -1, 0, or 1. The number of distinct (-1,0,1)-n×n matrices (counting row and column permutations, the ...
65537 is the largest known Fermat prime, and the 65537-gon is therefore a constructible polygon using compass and straightedge, as proved by Gauss. The 65537-gon has so many ...
The conjecture that the number of alternating sign matrices "bordered" by +1s A_n is explicitly given by the formula A_n=product_(j=0)^(n-1)((3j+1)!)/((n+j)!). This ...
Andrica's conjecture states that, for p_n the nth prime number, the inequality A_n=sqrt(p_(n+1))-sqrt(p_n)<1 holds, where the discrete function A_n is plotted above. The ...
Archimedes' axiom, also known as the continuity axiom or Archimedes' lemma, survives in the writings of Eudoxus (Boyer and Merzbach 1991), but the term was first coined by ...
An infinite sequence of positive integers 1<=b_1<b_2<b_3<..., (1) also called a Sidon sequence, such that all pairwise sums b_i+b_j (2) for i<=j are distinct (Guy 1994). An ...
The Bailey mod 9 identities are a set of three Rogers-Ramanujan-like identities appearing as equations (1.6), (1.8), and (1.7) on p. 422 of Bailey (1947) given by A(q) = ...
The Barnes-Wall lattice is a d-dimensional lattice that exists when d is a power of 2. It is implemented in the Wolfram Language as LatticeData[{"BarnesWall", n}]. Special ...
...