Search Results for ""
871 - 880 of 1777 for Well DefinedSearch Results
![](/common/images/search/spacer.gif)
A harmonic series is a continued fraction-like series [n;a,b,c,...] defined by x=n+1/2(a+1/3(b+1/4(c+...))) (Havil 2003, p. 99). Examples are given in the following table. c ...
The haversine, also called the haversed sine, is a little-used entire trigonometric function defined by hav(z) = 1/2vers(z) (1) = 1/2(1-cosz) (2) = sin^2(1/2z), (3) where ...
The Heath-Brown-Moroz constant is defined by C_(Heath-Brown-Moroz) = product_(p)(1-1/p)^7(1+(7p+1)/(p^2)) (1) = 0.00131764115... (2) (OEIS A118228), where the product is ...
A family of operators mapping each space M_k of modular forms onto itself. For a fixed integer k and any positive integer n, the Hecke operator T_n is defined on the set M_k ...
On the surface of a sphere, attempt separation of variables in spherical coordinates by writing F(theta,phi)=Theta(theta)Phi(phi), (1) then the Helmholtz differential ...
The heptanacci numbers are a generalization of the Fibonacci numbers defined by H_0=0, H_1=1, H_2=1, H_3=2, H_4=4, H_5=8, H_6=16, and the recurrence relation ...
Consider a first-order logic formula Phi in Skolemized form forall x_1... forall x_nS. Then the Herbrand universe H of S is defined by the following rules. 1. All constants ...
The Hermite constant is defined for dimension n as the value gamma_n=(sup_(f)min_(x_i)f(x_1,x_2,...,x_n))/([discriminant(f)]^(1/n)) (1) (Le Lionnais 1983). In other words, ...
The Hermite polynomials H_n(x) are set of orthogonal polynomials over the domain (-infty,infty) with weighting function e^(-x^2), illustrated above for n=1, 2, 3, and 4. ...
The hexanacci numbers are a generalization of the Fibonacci numbers defined by H_0=0, H_1=1, H_2=1, H_3=2, H_4=4, H_5=8, and the recurrence relation ...
![](/common/images/search/spacer.gif)
...