TOPICS
Search

Search Results for ""


551 - 560 of 1777 for Well DefinedSearch Results
Solving the nome q for the parameter m gives m(q) = (theta_2^4(q))/(theta_3^4(q)) (1) = (16eta^8(1/2tau)eta^(16)(2tau))/(eta^(24)(tau)), (2) where theta_i(q)=theta_i(0,q) is ...
The Jacobi symbol, written (n/m) or (n/m) is defined for positive odd m as (n/m)=(n/(p_1))^(a_1)(n/(p_2))^(a_2)...(n/(p_k))^(a_k), (1) where m=p_1^(a_1)p_2^(a_2)...p_k^(a_k) ...
Given a set y=f(x) of n equations in n variables x_1, ..., x_n, written explicitly as y=[f_1(x); f_2(x); |; f_n(x)], (1) or more explicitly as {y_1=f_1(x_1,...,x_n); |; ...
Kloosterman's sum is defined by S(u,v,n)=sum_(h)exp[(2pii(uh+vh^_))/n], (1) where h runs through a complete set of residues relatively prime to n and h^_ is defined by hh^_=1 ...
The Laplace-Carson transform F of a real-valued function f is an integral transform defined by the formula F(p)=pint_0^inftye^(-pt)f(t)dt. (1) In most cases, the function F ...
The lemniscate functions arise in rectifying the arc length of the lemniscate. The lemniscate functions were first studied by Jakob Bernoulli and Giulio Fagnano. A historical ...
A linear transformation between two vector spaces V and W is a map T:V->W such that the following hold: 1. T(v_1+v_2)=T(v_1)+T(v_2) for any vectors v_1 and v_2 in V, and 2. ...
An operation on rings and modules. Given a commutative unit ring R, and a subset S of R, closed under multiplication, such that 1 in S, and 0 not in S, the localization of R ...
A Lyapunov function is a scalar function V(y) defined on a region D that is continuous, positive definite, V(y)>0 for all y!=0), and has continuous first-order partial ...
The product C of two matrices A and B is defined as c_(ik)=a_(ij)b_(jk), (1) where j is summed over for all possible values of i and k and the notation above uses the ...
1 ... 53|54|55|56|57|58|59 ... 178 Previous Next

...