TOPICS
Search

Search Results for ""


1201 - 1210 of 1777 for Well DefinedSearch Results
The constants C_n defined by C_n=[int_0^infty|d/(dt)((sint)/t)^n|dt]-1. (1) These constants can also be written as the sums C_n=2sum_(k=1)^infty(1+x_k^2)^(-n/2), (2) and ...
An invariant of an elliptic curve given in the form y^2=x^3+ax+b which is closely related to the elliptic discriminant and defined by j(E)=(2^83^3a^3)/(4a^3+27b^2). The ...
The symbol ker has at least two different meanings in mathematics. It can refer to a special function related to Bessel functions, or (written either with a capital or ...
When p is a prime number, then a p-group is a group, all of whose elements have order some power of p. For a finite group, the equivalent definition is that the number of ...
Any nonzero rational number x can be represented by x=(p^ar)/s, (1) where p is a prime number, r and s are integers not divisible by p, and a is a unique integer. The p-adic ...
The exponential function has two different natural q-extensions, denoted e_q(z) and E_q(z). They are defined by e_q(z) = sum_(n=0)^(infty)(z^n)/((q;q)_n) (1) = _1phi_0[0; ...
The q-analog of the factorial (by analogy with the q-gamma function). For k an integer, the q-factorial is defined by [k]_q! = faq(k,q) (1) = ...
A q-analog of the gamma function defined by Gamma_q(x)=((q;q)_infty)/((q^x;q)_infty)(1-q)^(1-x), (1) where (x,q)_infty is a q-Pochhammer symbol (Koepf 1998, p. 26; Koekoek ...
The q-analog of pi pi_q can be defined by setting a=0 in the q-factorial [a]_q!=1(1+q)(1+q+q^2)...(1+q+...+q^(a-1)) (1) to obtain ...
Define the nome by q=e^(-piK^'(k)/K(k))=e^(ipitau), (1) where K(k) is the complete elliptic integral of the first kind with modulus k, K^'(k)=K(sqrt(1-k^2)) is the ...
1 ... 118|119|120|121|122|123|124 ... 178 Previous Next

...