Search Results for ""
471 - 480 of 2142 for Trigonometry Angles Pi 17Search Results
![](/common/images/search/spacer.gif)
For R[n]>-1 and R[z]>0, Pi(z,n) = n^zint_0^1(1-x)^nx^(z-1)dx (1) = (n!)/((z)_(n+1))n^z (2) = B(z,n+1), (3) where (z)_n is the Pochhammer symbol and B(p,q) is the beta ...
The integral 1/(2pi(n+1))int_(-pi)^pif(x){(sin[1/2(n+1)x])/(sin(1/2x))}^2dx which gives the nth Cesàro mean of the Fourier series of f(x).
Consider a symmetric triangle wave T(x) of period 2L. Since the function is odd, a_0 = 0 (1) a_n = 0, (2) and b_n = (3) = (32)/(pi^2n^2)cos(1/4npi)sin^3(1/4npi) (4) = ...
The infinite product identity Gamma(1+v)=2^(2v)product_(m=1)^infty[pi^(-1/2)Gamma(1/2+2^(-m)v)], where Gamma(x) is the gamma function.
Let a, b, and c be the lengths of the legs of a triangle opposite angles A, B, and C. Then the law of cosines states a^2 = b^2+c^2-2bccosA (1) b^2 = a^2+c^2-2accosB (2) c^2 = ...
Define the first Brocard point as the interior point Omega of a triangle for which the angles ∠OmegaAB, ∠OmegaBC, and ∠OmegaCA are equal to an angle omega. Similarly, define ...
Abel's integral is the definite integral I = int_0^infty(tdt)/((e^(pit)-e^(-pit))(t^2+1)) (1) = 1/2int_(-infty)^infty(tdt)/((e^(pit)-e^(-pit))(t^2+1)) (2) = ...
Given a group action G×F->F and a principal bundle pi:A->M, the associated fiber bundle on M is pi^~:A×F/G->M. (1) In particular, it is the quotient space A×F/G where ...
The two functions theta(x) and psi(x) defined below are known as the Chebyshev functions. The function theta(x) is defined by theta(x) = sum_(k=1)^(pi(x))lnp_k (1) = ...
By analogy with the divisor function sigma_1(n), let pi(n)=product_(d|n)d (1) denote the product of the divisors d of n (including n itself). For n=1, 2, ..., the first few ...
![](/common/images/search/spacer.gif)
...