TOPICS
Search

Fourier Series--Triangle Wave


FourierSeriesTriangleWave

Consider a symmetric triangle wave T(x) of period 2L. Since the function is odd,

a_0=0
(1)
a_n=0,
(2)

and

b_n=2/L{int_0^(L/2)x/(L/2)sin((npix)/L)dx+int_(L/2)^L[1-2/L(x-1/2L)]sin((npix)/L)dx}
(3)
=(32)/(pi^2n^2)cos(1/4npi)sin^3(1/4npi)
(4)
=(32)/(pi^2n^2){0 n=0, 4, ...; 1/4 n=1, 5, ...; 0 n=2, 6, ...; -1/4 n=3, 7, ...
(5)
=8/(pi^2n^2){(-1)^((n-1)/2) for n odd; 0 for n even.
(6)

The Fourier series for the triangle wave is therefore

 f(x)=8/(pi^2)sum_(n=1,3,5,...)^infty((-1)^((n-1)/2))/(n^2)sin((npix)/L).
(7)
FourierSeriesTriangleWaves

Now consider the asymmetric triangle wave pinned an x-distance which is (1/m)th of the distance L. The displacement as a function of x is then

 f_m(x)={(mx)/L   for 0<=x<=L/m; 1-m/((m-1)L)(x-L/m)   for L/m<=x<=2L-L/m; m/L(x-2L)   for 2L-L/m<=x<=2L.
(8)

The coefficients are therefore

a_0=0
(9)
a_n=0
(10)
b_n=-(2(-1)^nm^2)/(n^2(m-1)pi^2)sin[(n(m-1)pi)/m].
(11)

Taking m=2 gives the same Fourier series as before.


See also

Fourier Series, Fourier Series--Sawtooth Wave, Fourier Series--Square Wave, Triangle Wave

Explore with Wolfram|Alpha

Cite this as:

Weisstein, Eric W. "Fourier Series--Triangle Wave." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/FourierSeriesTriangleWave.html

Subject classifications