TOPICS
Search

Search Results for ""


1 - 10 of 2142 for Trigonometry Angles Pi 17Search Results
By the definition of the functions of trigonometry, the sine of pi is equal to the y-coordinate of the point with polar coordinates (r,theta)=(1,pi), giving sinpi=0. ...
cos(pi/(12)) = 1/4(sqrt(6)+sqrt(2)) (1) cos((5pi)/(12)) = 1/4(sqrt(6)-sqrt(2)) (2) cot(pi/(12)) = 2+sqrt(3) (3) cot((5pi)/(12)) = 2-sqrt(3) (4) csc(pi/(12)) = sqrt(6)+sqrt(2) ...
cos(pi/(15)) = 1/8(sqrt(30+6sqrt(5))+sqrt(5)-1) (1) cos((2pi)/(15)) = 1/8(sqrt(30-6sqrt(5))+sqrt(5)+1) (2) cos((4pi)/(15)) = 1/8(sqrt(30+6sqrt(5))-sqrt(5)+1) (3) ...
cos(pi/(10)) = 1/4sqrt(10+2sqrt(5)) (1) cos((3pi)/(10)) = 1/4sqrt(10-2sqrt(5)) (2) cot(pi/(10)) = sqrt(5+2sqrt(5)) (3) cot((3pi)/(10)) = sqrt(5-2sqrt(5)) (4) csc(pi/(10)) = ...
cos(pi/(32)) = 1/2sqrt(2+sqrt(2+sqrt(2+sqrt(2)))) (1) cos((3pi)/(32)) = 1/2sqrt(2+sqrt(2+sqrt(2-sqrt(2)))) (2) cos((5pi)/(32)) = 1/2sqrt(2+sqrt(2-sqrt(2-sqrt(2)))) (3) ...
17 is a Fermat prime, which means that the 17-sided regular polygon (the heptadecagon) is constructible using compass and straightedge (as proved by Gauss).
cos(pi/(16)) = 1/2sqrt(2+sqrt(2+sqrt(2))) (1) cos((3pi)/(16)) = 1/2sqrt(2+sqrt(2-sqrt(2))) (2) cos((5pi)/(16)) = 1/2sqrt(2-sqrt(2-sqrt(2))) (3) cos((7pi)/(16)) = ...
cos(pi/(24)) = 1/2sqrt(2+sqrt(2+sqrt(3))) (1) cos((5pi)/(24)) = 1/2sqrt(2+sqrt(2-sqrt(3))) (2) cos((7pi)/(24)) = 1/2sqrt(2-sqrt(2-sqrt(3))) (3) cos((11pi)/(24)) = ...
Values of the trigonometric functions can be expressed exactly for integer multiples of pi/20. For cosx, cos(pi/(20)) = 1/4sqrt(8+2sqrt(10+2sqrt(5))) (1) cos((3pi)/(20)) = ...
cos(pi/(30)) = 1/4sqrt(7+sqrt(5)+sqrt(6(5+sqrt(5)))) (1) cos((7pi)/(30)) = 1/4sqrt(7-sqrt(5)+sqrt(6(5-sqrt(5)))) (2) cos((11pi)/(30)) = 1/4sqrt(7+sqrt(5)-sqrt(6(5+sqrt(5)))) ...
1|2|3|4 ... 215 Next

...