Search Results for ""
3451 - 3460 of 13134 for Theory of mindSearch Results
![](/common/images/search/spacer.gif)
A cubic triangular number is a positive integer that is simultaneously cubic and triangular. Such a number must therefore satisfy T_n=m^3 for some positive integers n and m, ...
Given a weighted, undirected graph G=(V,E) and a graphical partition of V into two sets A and B, the cut of G with respect to A and B is defined as cut(A,B)=sum_(i in A,j in ...
The cyclic group C_(10) is the unique Abelian group of group order 10 (the other order-10 group being the non-Abelian D_5). Examples include the integers modulo 10 under ...
The cyclic group C_(11) is unique group of group order 11. An example is the integers modulo 11 under addition (Z_(11)). No modulo multiplication group is isomorphic to ...
The cyclic group C_(12) is one of the two Abelian groups of the five groups total of group order 12 (the other order-12 Abelian group being finite group C2×C6). Examples ...
The group C_2 is the unique group of group order 2. C_2 is both Abelian and cyclic. Examples include the point groups C_s, C_i, and C_2, the integers modulo 2 under addition ...
C_5 is the unique group of group order 5, which is Abelian. Examples include the point group C_5 and the integers mod 5 under addition (Z_5). No modulo multiplication group ...
C_6 is one of the two groups of group order 6 which, unlike D_3, is Abelian. It is also a cyclic. It is isomorphic to C_2×C_3. Examples include the point groups C_6 and S_6, ...
C_7 is the cyclic group that is the unique group of group order 7. Examples include the point group C_7 and the integers modulo 7 under addition (Z_7). No modulo ...
The cyclic group C_8 is one of the three Abelian groups of the five groups total of group order 8. Examples include the integers modulo 8 under addition (Z_8) and the residue ...
![](/common/images/search/spacer.gif)
...