Search Results for ""
41 - 50 of 2285 for Symmetric Positive Definite MatrixSearch Results
![](/common/images/search/spacer.gif)
A square matrix is called Hermitian if it is self-adjoint. Therefore, a Hermitian matrix A=(a_(ij)) is defined as one for which A=A^(H), (1) where A^(H) denotes the conjugate ...
A (2n)×(2n) complex matrix A in C^(2n×2n) is said to be Hamiltonian if J_nA=(J_nA)^(H), (1) where J_n in R^(2n×2n) is the matrix of the form J_n=[0 I_n; I_n 0], (2) I_n is ...
A n×n matrix A is an orthogonal matrix if AA^(T)=I, (1) where A^(T) is the transpose of A and I is the identity matrix. In particular, an orthogonal matrix is always ...
A C-matrix is a symmetric (C^(T)=C) or antisymmetric (C^(T)=-C) C_n (-1,0,1)-matrix with diagonal elements 0 and others +/-1 that satisfies CC^(T)=(n-1)I, (1) where I is the ...
A doubly nonnegative matrix is a real positive semidefinite n×n square matrix with nonnegative entries. Any doubly nonnegative matrix A of order n can be expressed as a Gram ...
A square matrix U is a unitary matrix if U^(H)=U^(-1), (1) where U^(H) denotes the conjugate transpose and U^(-1) is the matrix inverse. For example, A=[2^(-1/2) 2^(-1/2) 0; ...
The detour matrix Delta, sometimes also called the maximum path matrix or maximal topological distances matrix, of a graph is a symmetric matrix whose (i,j)th entry is the ...
A nonnegative matrix is a real or integer matrix (a)_(ij) for which each matrix element is a nonnegative number, i.e., a_(ij)>=0 for all i, j. Nonnegative matrices are ...
A unimodular matrix is a real square matrix A with determinant det(A)=+/-1 (Born and Wolf 1980, p. 55; Goldstein 1980, p. 149). More generally, a matrix A with elements in ...
A generalized Vandermonde matrix of two sequences a and b where a is an increasing sequence of positive integers and b is an increasing sequence of nonnegative integers of ...
![](/common/images/search/spacer.gif)
...