TOPICS
Search

Search Results for ""


9411 - 9420 of 13135 for Square Triangular NumberSearch Results
The function ber_nu(z) is defined through the equation J_nu(ze^(3pii/4))=ber_nu(z)+ibei_nu(z), (1) where J_nu(z) is a Bessel function of the first kind, so ...
A Berge graph is a simple graph that contains no odd graph hole and no odd graph antihole. The strong perfect graph theorem asserts that a graph is perfect iff it is a Berge ...
(dy)/(dx)+p(x)y=q(x)y^n. (1) Let v=y^(1-n) for n!=1. Then (dv)/(dx)=(1-n)y^(-n)(dy)/(dx). (2) Rewriting (1) gives y^(-n)(dy)/(dx) = q(x)-p(x)y^(1-n) (3) = q(x)-vp(x). (4) ...
In order to find a root of a polynomial equation a_0x^n+a_1x^(n-1)+...+a_n=0, (1) consider the difference equation a_0y(t+n)+a_1y(t+n-1)+...+a_ny(t)=0, (2) which is known to ...
The longstanding conjecture that the nonimaginary solutions E_n of zeta(1/2+iE_n)=0, (1) where zeta(z) is the Riemann zeta function, are the eigenvalues of an "appropriate" ...
There are several versions of the Berry paradox, the original version of which was published by Bertrand Russell and attributed to Oxford University librarian Mr. G. Berry. ...
A type of abstract space which occurs in spline and rational function approximations. The Besov space B_(p,q)^alpha is a complete quasinormed space which is a Banach space ...
A series of the form sum_(n=0)^inftya_nJ_(nu+n)(z), (1) where nu is a real and J_(nu+n)(z) is a Bessel function of the first kind. Special cases are ...
Krall and Fink (1949) defined the Bessel polynomials as the function y_n(x) = sum_(k=0)^(n)((n+k)!)/((n-k)!k!)(x/2)^k (1) = sqrt(2/(pix))e^(1/x)K_(-n-1/2)(1/x), (2) where ...
Bessel's correction is the factor (N-1)/N in the relationship between the variance sigma and the expectation values of the sample variance, <s^2>=(N-1)/Nsigma^2, (1) where ...
1 ... 939|940|941|942|943|944|945 ... 1314 Previous Next

...