TOPICS
Search

Search Results for ""


31 - 40 of 2579 for Spherical Bessel Differential EquationSearch Results
S_n(z) = zj_n(z)=sqrt((piz)/2)J_(n+1/2)(z) (1) C_n(z) = -zn_n(z)=-sqrt((piz)/2)N_(n+1/2)(z), (2) where j_n(z) and n_n(z) are spherical Bessel functions of the first and ...
The general nonhomogeneous differential equation is given by x^2(d^2y)/(dx^2)+alphax(dy)/(dx)+betay=S(x), (1) and the homogeneous equation is x^2y^('')+alphaxy^'+betay=0 (2) ...
A differential equation is an equation that involves the derivatives of a function as well as the function itself. If partial derivatives are involved, the equation is called ...
The complex second-order ordinary differential equation x^2y^('')+xy^'-(ix^2+nu^2)y=0 (1) (Abramowitz and Stegun 1972, p. 379; Zwillinger 1997, p. 123), whose solutions can ...
A partial differential equation (PDE) is an equation involving functions and their partial derivatives; for example, the wave equation ...
The ordinary differential equation (1) (Byerly 1959, p. 255). The solution is denoted E_m^p(x) and is known as an ellipsoidal harmonic of the first kind, or Lamé function. ...
J_n(x)=1/piint_0^picos(ntheta-xsintheta)dtheta, where J_n(x) is a Bessel function of the first kind.
Solving the wave equation on a disk gives a solution in terms of Bessel functions.
A functional differential equation is a differential equation in which the derivative y^'(t) of an unknown function y has a value at t that is related to y as a function of ...
(1) or (2) The solutions are Jacobi polynomials P_n^((alpha,beta))(x) or, in terms of hypergeometric functions, as y(x)=C_1_2F_1(-n,n+1+alpha+beta,1+alpha,1/2(x-1)) ...
1|2|3|4|5|6|7 ... 258 Previous Next

...