TOPICS
Search

Search Results for ""


2501 - 2510 of 3276 for Special Unitary GroupSearch Results
The hyperbolic cosecant is defined as cschz=1/(sinhz)=2/(e^z-e^(-z)). (1) It is implemented in the Wolfram Language as Csch[z]. It is related to the hyperbolic cotangent ...
The hyperbolic cotangent is defined as cothz=(e^z+e^(-z))/(e^z-e^(-z))=(e^(2z)+1)/(e^(2z)-1). (1) The notation cthz is sometimes also used (Gradshteyn and Ryzhik 2000, p. ...
The hyperbolic secant is defined as sechz = 1/(coshz) (1) = 2/(e^z+e^(-z)), (2) where coshz is the hyperbolic cosine. It is implemented in the Wolfram Language as Sech[z]. On ...
A number n is called k-hyperperfect if n = 1+ksum_(i)d_i (1) = 1+k[sigma(n)-n-1], (2) where sigma(n) is the divisor function and the summation is over the proper divisors ...
If the square is instead erected internally, their centers form a triangle DeltaI_AI_BI_C that has (exact) trilinear vertex matrix given by (1) (E. Weisstein, Apr. 25, 2004). ...
The number of different triangles which have integer side lengths and perimeter n is T(n) = P(n,3)-sum_(1<=j<=|_n/2_|)P(j,2) (1) = [(n^2)/(12)]-|_n/4_||_(n+2)/4_| (2) = ...
The Johnson triangle DeltaJ_AJ_BJ_C, a term coined here for the first time, is the triangle formed by the centers of the Johnson circles. It has trilinear vertex matrix ...
The sequence of numbers {j_n} giving the number of digits in the three-fold power tower n^(n^n). The values of n^(n^n) for n=1, 2, ... are 1, 16, 7625597484987, ... (OEIS ...
An integer j(n) is called a jumping champion if j(n) is the most frequently occurring difference between consecutive primes <=n (Odlyzko et al. 1999). This term was coined by ...
A theorem, also known as Bachet's conjecture, which Bachet inferred from a lack of a necessary condition being stated by Diophantus. It states that every positive integer can ...
1 ... 248|249|250|251|252|253|254 ... 328 Previous Next

...