TOPICS
Search

Search Results for ""


1761 - 1770 of 3276 for Special Unitary GroupSearch Results
The q-analog of the derivative, defined by (d/(dx))_qf(x)=(f(x)-f(qx))/(x-qx). (1) For example, (d/(dx))_qsinx = (sinx-sin(qx))/(x-qx) (2) (d/(dx))_qlnx = ...
where _8phi_7 is a q-hypergeometric function.
A q-analog of the multinomial coefficient, defined as ([a_1+...+a_n]_q!)/([a_1]_q!...[a_n]_q!), where [n]_q! is a q-factorial.
_2phi_1(a,q^(-n);c;q,q)=(a^n(c/a,q)_n)/((a;q)_n), where _2phi_1(a,b;c;q,z) is a q-hypergeometric function.
_8phi_7[a,qa^(1/2),-qa^(1/2),b,c,d,e,q^(-N); a^(1/2),-a^(1/2),(aq)/b,(aq)/c,(aq)/d,(aq)/e,aq^(N+1);q,(aq^(N+2))/(bcde)] ...
Let B_k be the kth Bernoulli number and consider nB_(n-1)=-1 (mod n), where the residues of fractions are taken in the usual way so as to yield integers, for which the ...
Given a point with trilinear coordinates P=alpha:beta:gamma, the anticevian triangle DeltaA^'B^'C^' of a triangle DeltaABC with respect to P is a triangle such that 1. B^'C^' ...
There are two kinds of Bell polynomials. A Bell polynomial B_n(x), also called an exponential polynomial and denoted phi_n(x) (Bell 1934, Roman 1984, pp. 63-67) is a ...
The polynomials defined by B_(i,n)(t)=(n; i)t^i(1-t)^(n-i), (1) where (n; k) is a binomial coefficient. The Bernstein polynomials of degree n form a basis for the power ...
A binomial number is a number of the form a^n+/-b^n, where a,b, and n are integers. Binomial numbers can be factored algebraically as ...
1 ... 174|175|176|177|178|179|180 ... 328 Previous Next

...