TOPICS
Search

Search Results for ""


1641 - 1650 of 3276 for Special Unitary GroupSearch Results
e^(izcostheta)=sum_(n=-infty)^inftyi^nJ_n(z)e^(intheta), where J_n(z) is a Bessel function of the first kind. The identity can also be written ...
The circumcircle of the Johnson triangle DeltaJ_AJ_BJ_C has center at the orthocenter H of the reference triangle and radius R, where R is the circumradius of the reference ...
Applying the Kaprekar routine to 4-digit number reaches 0 for exactly 77 4-digit numbers, while the remainder give 6174 in at most 8 iterations. The value 6174 is sometimes ...
The infinite product identity Gamma(1+v)=2^(2v)product_(m=1)^infty[pi^(-1/2)Gamma(1/2+2^(-m)v)], where Gamma(x) is the gamma function.
Let J_nu(z) be a Bessel function of the first kind, N_nu(z) a Bessel function of the second kind, and j_(nu,n)(z) the zeros of z^(-nu)J_nu(z) in order of ascending real part. ...
The symbol defined by c^(a/b) = c(c+b)(c+2b)...[c+(a-1)b] (1) = b^a(c/b)_a (2) = (b^aGamma(a+c/b))/(Gamma(c/b)), (3) where (a)_n is the Pochhammer symbol and Gamma(z) is the ...
A transformation of a hypergeometric function,
An identity which relates hypergeometric functions,
The identity _2F_1(x,-x;x+n+1;-1)=(Gamma(x+n+1)Gamma(1/2n+1))/(Gamma(x+1/2n+1)Gamma(n+1)), or equivalently ...
(theta_3(z,t)theta_4(z,t))/(theta_4(2z,2t))=(theta_3(0,t)theta_4(0,t))/(theta_4(0,2t))=(theta_2(z,t)theta_1(z,t))/(theta_1(2z,2t)), where theta_i are Jacobi theta functions. ...
1 ... 162|163|164|165|166|167|168 ... 328 Previous Next

...