TOPICS
Search

Jacobi-Anger Expansion


 e^(izcostheta)=sum_(n=-infty)^inftyi^nJ_n(z)e^(intheta),

where J_n(z) is a Bessel function of the first kind. The identity can also be written

 e^(izcostheta)=J_0(z)+2sum_(n=1)^inftyi^nJ_n(z)cos(ntheta).

This expansion represents an expansion of plane waves into a series of cylindrical waves.


See also

Bessel Function of the First Kind

Explore with Wolfram|Alpha

Cite this as:

Weisstein, Eric W. "Jacobi-Anger Expansion." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Jacobi-AngerExpansion.html

Subject classifications