TOPICS
Search

Search Results for ""


451 - 460 of 3395 for Sinc FunctionSearch Results
Q_n^((alpha,beta))(x)=2^(-n-1)(x-1)^(-alpha)(x+1)^(-beta) ×int_(-1)^1(1-t)^(n+alpha)(1+t)^(n+beta)(x-t)^(-n-1)dt. In the exceptional case n=0, alpha+beta+1=0, a nonconstant ...
The wave equation in oblate spheroidal coordinates is del ^2Phi+k^2Phi=partial/(partialxi_1)[(xi_1^2+1)(partialPhi)/(partialxi_1)] ...
The second solution Q_l(x) to the Legendre differential equation. The Legendre functions of the second kind satisfy the same recurrence relation as the Legendre polynomials. ...
A real-valued univariate function f=f(x) is said to have a removable discontinuity at a point x_0 in its domain provided that both f(x_0) and lim_(x->x_0)f(x)=L<infty (1) ...
The value for zeta(2)=sum_(k=1)^infty1/(k^2) (1) can be found using a number of different techniques (Apostol 1983, Choe 1987, Giesy 1972, Holme 1970, Kimble 1987, Knopp and ...
A method for computing the prime counting function. Define the function T_k(x,a)=(-1)^(beta_0+beta_1+...+beta_(a-1))|_x/(p_1^(beta_0)p_2^(beta_1)...p_a^(beta_(a-1)))_|, (1) ...
Divide a triangle by its three medians into six smaller triangles. Surprisingly, the circumcenters O_(AB), O_(BA), etc. of the six circumcircles of these smaller triangles ...
Let Gamma(z) be the gamma function and n!! denote a double factorial, then [(Gamma(m+1/2))/(Gamma(m))]^2[1/m+(1/2)^21/(m+1)+((1·3)/(2·4))^21/(m+2)+...]_()_(n) ...
Let a, b, and c be the lengths of the legs of a triangle opposite angles A, B, and C. Then the law of sines states that a/(sinA)=b/(sinB)=c/(sinC)=2R, (1) where R is the ...
In the fields of functional and harmonic analysis, the Littlewood-Paley decomposition is a particular way of decomposing the phase plane which takes a single function and ...
1 ... 43|44|45|46|47|48|49 ... 340 Previous Next

...