TOPICS
Search

Oblate Spheroidal Wave Function


The wave equation in oblate spheroidal coordinates is

 del ^2Phi+k^2Phi=partial/(partialxi_1)[(xi_1^2+1)(partialPhi)/(partialxi_1)] 
 +partial/(partialxi_2)[(1-xi_2^2)(partialPhi)/(partialxi_2)]+(xi_1^2+xi_2^2)/((xi_1^2+1)(1-x_2^2))(partial^2Phi)/(partialphi^2) 
 +c^2(xi_1^2+xi_2^2)Phi=0,
(1)

where

 c=1/2ak.
(2)

Substitute in a trial solution

 Phi=R_(mn)(c,xi_1)S_(mn)(c,xi_2)cos; sin(mphi).
(3)

The radial differential equation is

 d/(dxi_2)[(1+xi_2^2)d/(dxi_2)S_(mn)(c,xi_2)]-(lambda_(mn)-c^2xi_2^2+(m^2)/(1+xi_2^2))R_(mn)(c,xi_2)=0,
(4)

and the angular differential equation is

 d/(dxi_2)[(1-xi_2^2)d/(dxi_2)S_(mn)(c,xi_2)]-(lambda_(mn)-c^2xi_2^2+(m^2)/(1-xi_2^2))R_(mn)(c,xi_2)=0
(5)

(Abramowitz and Stegun 1972, pp. 753-755; Zwillinger 1997, p. 127).


See also

Prolate Spheroidal Wave Function, Spheroidal Wave Function

Explore with Wolfram|Alpha

References

Abramowitz, M. and Stegun, I. A. (Eds.). "Spheroidal Wave Functions." Ch. 21 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 751-759, 1972.Zwillinger, D. Handbook of Differential Equations, 3rd ed. Boston, MA: Academic Press, p. 127, 1997.

Referenced on Wolfram|Alpha

Oblate Spheroidal Wave Function

Cite this as:

Weisstein, Eric W. "Oblate Spheroidal Wave Function." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/OblateSpheroidalWaveFunction.html

Subject classifications